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Summary 

The diffusion of solute molecules through the stratum corneum has been de- 
scribed using a Monte-Carlo random walk model. The results obtained are in 

agreement with the solutions obtained from Fick’s first and second laws. The 
method is computationally simple to apply, can handle time variation of the stratum 
corneum’s thickness and diffusion coefficient, and provides physical insight into the 
process of diffusion on a molecular level. 

Introduction 

The skin consists principally of the stratum corneum, epidermal and dermal 
layers. Of these layers, the 10 pm stratum corneum layer has been shown to be the 
principal barrier to drug transport across the skin (Scheuplein and Blank, 1971). 

When a vehicle containing drug is placed on the surface of an excised piece of 
stratum corneum, the drug will eventually diffuse through the stratum corneum 
resulting in an output flux. This process can be described by using the one-dimen- 
sional forms of Fick’s first and second laws: 

J= _& 
dx 

K D a2c _= - 
at ax2 

where J represents the flux, C the concentration, D the diffusion coefficient, x the 
distance, and t the time. 
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Analytical solutions for these equations have been given by Crank (1975); and 
with the advent of the computer, it has become feasible to solve such equations by 
numerical techniques employing difference equations (Gerald, 1980). 

Alternatively, this one-dimensional diffusion process can be viewed as a one-di- 
mensional random walk. Such an interpretation provides greater physical insight 
into the diffusional process on a molecular level. The physical basis for such an 
assumption is that molecules, which have thermal energy, undergo brownian motion. 

The random process can be described in terms of macroscopically measurable 
parameters by using the following relationship, developed by Einstein, 

m= 2DAt (3) 

where (Ax)* is the mean squared distance a molecule will move in a time At and D 
represents the diffusion coefficient. The appropriateness of such an approach can be 
illustrated by recognizing that the time and spatially dependent probability density 
function generated for such a random walk will lead to Fick’s first and second laws 
if Eqn. 3 holds (Kac, 1954). Here it is assumed that molecules have equal probability 

of taking a forward or backward step of size \ii-- m (this step size will be called Ax 
throughout the remainder of the paper). 

Materials and Methods 

A section of the stratum corneum normal to the surface is represented by a 
one-dimensional array, where each element in the array is a unit cell having an area 
of 1 pm2 and a height of Ax. Fig. 1 depicts the stratum corneum as consisting of m 

elements. An additional array element represents the vehicle phase (thickness equals 
Ax) while a second additional array element represents the sink at the stratum 

corneum-epidermis interface. If there are m elements in the stratum corneum array, 
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Fig. 1. A one-dimensional array model, consisting of m+2 elements, of the stratum corneum: where 

V = vehicle, SC = stratum corneum. and E = epidermis. 



then the stratum corneum thickness plus the vehicle phase thickness divided by 

m + 1 equals Ax. No additional array elements are necessary to represent the vehicle 
phase since this phase is considered to be homogeneously distributed with drug 
molecules, and because direct transfer of drug molecules across the vehicle-stratum 
corneum interface can only occur within a distance Ax of the interface. It should be 
noted that in this simple model the unstirred diffusion layer at the vehicle-stratum 

corneum interface has been ignored. This could be easily incorporated by adding an 
additional array element between the bulk vehicle phase and the stratum corneum 

which would represent the stagnant diffusion layer. 

Let the operation of randomly determining the direction of molecular movement 
for each molecule, be referred to as one iteration. The time transpired during one 
iteration is equal to At and the total time elapsed after q iterations equals qbt. At 
t = 0 (before any iterations), all drug molecules are in the vehicle phase. When t = At 
(the first iterative step through the array), a random number (R) between zero and 
one is generated for each drug molecule available for transport from the vehicle 
phase. If R > 0.5, the drug molecule moves down into the first element of the 
stratum corneum array; otherwise, the molecule remains in the vehicle phase. 
Because there are no other molecules in the stratum corneum array, no further 
molecule movement can occur during the first At time period. At equilibrium, the 
molar free energy of the molecules on either side of the vehicle-stratum corneum 
interface must be equal. The required equilibrium amounts of drug molecules at the 
interface are set by the partition coefficient (K). For infinite dose conditions, the 
number of drug molecules available for transport from the vehicle phase to the 

stratum corneum (AMT) will therefore be: 

AMT = (1 pm’)AxKC, 

where C, is the vehicle concentration in molecules per cubic micron. If a finite dose 
is applied, a conservation of mass constraint must be employed to determine the 
number of molecules available for transport from the vehicle phase. The number of 
drug molecules available for transport from the vehicle phase will be equal to AMT 
until the following difference (DIF) is less than AMT: 

DIF=FD-SC-E (5) 

where FD is the finite dose, SC is the amount in the stratum corneum array, and E is 
the amount in the epidermis. This assumes that there is no loss of drug (e.g. 
degradation or evaporation from the vehicle phase). When AMT becomes greater 
than DIF, the number of molecules available for transport from the vehicle phase 
becomes equal to DIF. 

For the next and subsequent iterations, the first element of the array (the vehicle 
phase) is treated as before. However, the next m array elements are sequentially 
treated as follows: a random number is generated for each drug molecule present in 
the ith array element from the previous iterative step. If R > 0.5, the molecule moves 
to i + 1 element; otherwise, it moves to the i - 1 element. For the m + 1 array 
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element, if R > 0.5 the molecule moves to the m + 2 element (the stratum 
corneum-epidermis interface) and is counted as part of the amount released into the 
epidermis during the time interval qAt - (q-1)At; otherwise. the molecule moves into 

the m’h array element,. Once the molecule arrives at the stratum corneum-epidermis 
interface it is not allowed to move back into the stratum corneum array. This 
corresponds to assuming sink conditions at the stratum corneum-epidermis inter- 

face. This assumption is reasonable since the diffusion coefficient of a drug in the 

epidermis is generally much greater than that of the stratum corneum (Scheuplein 
and Blank, 1971). 

The vehicle concentration (molecules/&) used and the fluxes (molecules/pmm’ . 
iteration) obtained from a simulation can be converted into moles/liter and 
moles/cm2 . h by using the following conversion relationships: 

c, = molecules/pm2 . Ax 1 X 10’5~m3 

N, liter 

J= 
i 

molecules entering m + 2 element/At . pm’ 

N, 
(7) 

where Ax is measured in pm, At in s, and N, is Avogadro’s constant. Here the 
density of the vehicle phase has been assumed to be unity. 

Let the subscript “0” refer to the condition where the diffusion coefficient (D) 
and the stratum corneum thickness plus vehicle thickness (H) are fixed with respect 
to time. The output flux (J,), obtained in time interval At,,, can be converted into an 
output flux (J) having a time varying stratum corneum thickness and diffusion 
coefficient by using the following conversion: 

J=Jo[$][$$] (8) 

where 

At(t) = [“@)l H(t) 
2D(t) 

andAx(t)=m+l 

Note that the factor Ax(t)/Ax, is required because as Ax(t) changes, the amount of 
drug allowed to enter the stratum corneum from the vehicle phase (Eqn. 4) also 
changes. 

All computer programs were written in BASIC and run on a VAX-11/780 at the 
Pharmacy Research Computing Facility. Simulations were run with AMT equalling 
100,000 and m equalling 9. Increasing AMT will decrease the percent standard 
deviation and increasing m will provide more information about the spatial distribu- 
tion of molecules in the stratum corneum (Fig. 4). However, both of these improve- 
ments result in longer computation times. The values of 9 for m and 100,000 for 
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AMT were chosen as a balance between an improved simulation versus an increase 
in computation time. For each test case, the fluxes from 5 runs were averaged, giving 

standard deviations which were less than & 1% of their associated mean values. 
Polynomial data fits for D(t) and H(t) were obtained by using a software package 
entitled CURVE FITTER from Interactive Microware (State College, PA). In this 

case, D(t) is interpreted as the mean diffusion coefficient (Wu. 1983) for the entire 
stratum corneum layer at time t. Hypothetical hand drawn curves of D and H vs 
time were fit using a third-order polynomial expansion. The curves were divided into 
two segments, each segment fit to the polynomial expansion with the value of the 

function continuous throughout the entire curve. Further improvement could be 
made, by using a cubic spline routine which would allow the function and its first 

and second derivatives to be continuous. 

Results and Discussion 

In Fig. 2, the fluxes and the drug distribution in the stratum corneum are 
identical (within the limits of the inherent random error associated with the 

no 
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Fig. 2. A graph of flux versus time for the infinite dose case. D, = 5 X1O-‘o cm2/s, D, = 2.5X10-‘” 

cm2/s, H = 10 pm, Ax = 1 pm. K = 1, and C, = 100,000 molecules/~m3. The results were scaled up to 

where C, = 1 mole/liter. The data plotted in this graph was obtained using the Monte-Carlo Model. The 

graph of the results obtained from the analytical solution is not plotted for clarity purposes because the 

plots are almost superimposable. The analytical equation used for comparison is: 

where Q yt is the amount per unit area at some time t leaving the stratum corneum into the epidermis 

(Scheuplein, R.J., 1983): Q$’ was evaluated numerically and then the flux was obtained by numerical 

differentiation. Also, error bars are not shown for clarity because of their small size (standard deviation < 

f 1% of mean). 
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computation) to the results obtained from analytical solutions to Fick’s first and 
second laws. That is, the time course and magnitude of flux, lag times, proportional- 
ity of flux to the diffusion coefficient at steady-state, and drug distribution are all in 
agreement. In terms of the random walk model, the lag time implies that the 
minimum time required for the drug molecule to move through the stratum corneum 
array is (m + 1)At. However, this is not absolutely correct since it has been assumed 
that all step sizes are equal. If the step size was allowed to have a Gaussian 
distribution, then a more accurate distribution would be obtained. The drug distri- 
bution obtained by the random walk model (Fig. 4) which assumes the diffusion 

coefficient is spatially independent, probably also lacks physical meaning, as would 
solutions obtained from Fick’s first and second laws when a constant diffusion 
coefficient is assumed. For example, stratum corneum tissue which is closer to the 
epidermis or in close proximity to an occlusive bandage is more hydrated. Since the 
degree of hydration is correlated with the value of the diffusion coefficient (Wu, 
1983), there would be a spatial variation in the diffusion coefficient which is not 

accounted for in this simulation. 
The graph shown in Fig. 3 was generated assuming a 1 molar solution was 

applied to 1 cm2 of stratum corneum. The thickness of the applied film was 1 pm. 
Situations where the finite dose changes as a function of time (such as with volatile 
substances or when drug degradation occurs in the vehicle phase) can be accounted 
for by incorporation of a loss term. For example, a first-order rate constant might be 
used to represent drug degradation. 

The stratum corneum thickness can increase by 4-fold and the diffusion coeffi- 
cient by 20-fold as the stratum corneum becomes fully hydrated (Scheuplein and 
Blank, 1971). Such changes can take place over a period of several hours. Figs. 5 and 
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Fig. 3. A graph of flux versus time for the finite dose case. D = 5 x lo-” cm2/s, H = 10 pm, Ax = 1 pm, 
K = 1, C, = 100,000 molecules/~m3, and dose = 200,000 molecules. Results were scaled up so that C, = 1 
mole/liter and the dose = 1 pmole. Results were obtained by using the Monte-Carlo Model. Error bars 
were not shown for clarity because of their small size (standard deviation < f 1% of mean). 
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6 represent hypothetical time profiles for the diffusion coefficient and stratum 

corneum thickness. The initial and final values are consistent with experimental data 

(Scheuplein and Blank, 1971). Any graphical plot of the time fluctuation in the 
stratum corneum thickness and diffusion coefficient can be accommodated by the 
model by fitting the data to a best fit polynomial. This provides an analytical 
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Fig. 4. % concentration of drug molecules, relative to C,, in the stratum corneum as a function of 
position. Simulation run with D = 5 x lo-” cm*/s, H=lO pm, Ax=1 pm, K=l, and C,=lOO,OOO 
molecules/um3. Results obtained from Monte-Carlo Model. Error bars were not shown for clarity 

because of their small size (standard deviation < & 1% of mean). 
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Fig. 5. Time variation of the diffusion coefficient. This graph was obtained by plotting the points 
generated from a third-order polynomial fit acquired from data derived from a hypothetical hand drawn 

curve of D(t) vs t. 
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expression for the diffusion coefficient and stratum corneum thickness which can be 
used in Eqn. 8. The resulting flux obtained is shown in Fig. 7. 

The model can easily account for situations where there are other driving forces 
causing drug transport besides passive diffusion. Such an example would be the 
application of an external electric field, as in iontophoresis (Gangarosa, 1980). Here. 
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Fig. 6. Time variation of the stratum corneum thickness. This graph was obtained by plotting the points 
generated from a third-order polynomial fit acquired from a hypothetical hand drawn curve of H(t) vs t. 
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Fig. 7. Flux vs time derived using Eqn. 8 with D(t) and H(t) as depicted in Figs. 5 and 6, respectively. 
Results were obtained from the Monte-Carlo Model assuming an infinite dose. Error bars were not shown 

for clarity because of their small size (standard deviation < f 1% of mean). 
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as a first approximation, the probability of moving forward would be 0.5 + a and the 

probability of moving backward 0.5 - a, where ‘a’ is some constant less than 0.5 
(Wax, 1954). In this context, diffusion can be viewed as an overall probability of 
moving in a given direction without requiring any detailed understanding of the 
transport process at the molecular level. In this sense, the random walk can be 
viewed as a model-independent approach to drug transport. However. as more 
information about the molecular pathway and mechanism of transport is obtained, it 
can easily be incorporated into the random walk formalism giving it more physical 
meaning. For example, as more detailed knowledge about the diffusional pathway of 

molecules through the stratum corneum is obtained, a three-dimensional random 
walk can be done. The advantage of using a random walk over other forms of 
solution becomes even more apparent in this case, since the complexity of solving a 

problem by a random walk method increases more slowly than solutions by other 
methods (King, 1951). 

The random walk model thus provides a versatile, simple, and physically 
meaningful alternative for the solution of diffusional skin transport problems and 
modelling of the physical parameters and variables. 
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